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Abstract

The evolutionary history of a set of taxa is usually represented by

a phylogenetic tree, and this model has greatly facilitated the discus-

sion and testing of hypotheses. However, it is well known that more

complex evolutionary scenarios are poorly described by such models.

Further, even when evolution proceeds in a tree-like manner, analysis

of the data may not be best served by using methods that enforce a tree

structure, but rather by a richer visualization of the data to evaluate

its properties, at least as an essential first step. Thus, phylogenetic net-

works should be employed when reticulate events such as hybridization,

horizontal gene transfer, recombination, or gene duplication and -loss

are believed to be involved, and, even in the absence of such events,

phylogenetic networks have a useful role to play. This paper reviews

the terminology used for phylogenetic networks and covers both split

networks and reticulate networks, how they are defined and how they

can be interpreted. Additionally, the paper outlines the beginnings of

a comprehensive statistical framework for applying split network meth-

ods. We show how split networks can represent confidence sets of trees

and introduce a conservative statistical test for whether the conflicting

signal in a network is treelike. Finally, this paper describes a new pro-

gram SplitsTree4, an interactive and comprehensive tool for inferring

different types of phylogenetic networks from sequences, distances and

trees.

Keywords: phylogeny, networks, software, confidence intervals

Running head: Phylogenetic Networks
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Introduction

The familiar evolutionary model assumes a tree, a model that has greatly

facilitated the discussion and testing of hypotheses. However, it is well

known that more complex evolutionary scenarios are poorly described by

such models. Even when evolution proceeds in a tree-like manner, analysis

of the data may not be best served by forcing the data onto a tree, or

assuming a tree-like model. Rather, visualization and exploration of the

data to discover and evaluate its properties can be an essential first step.

Recognition of theses issues has led to the development of a number of

different types of phylogenetic networks, see Figure 1.

[Figure 1 about here.]

In this article we first discuss the terminology used to describe and dis-

tinguish between the different types of phylogenetic networks and methods

that are currently in use. There are a number of different types of phyloge-

netic networks and this can be a source of confusion.

We then provide a detailed introduction to split networks, how they are

defined and how they can be interpreted. We discuss the use of split networks

in strategies for dealing with systematic error, especially as a preliminary

step to tree-based analysis, and show examples of a number of different types

of networks.

We outline the beginnings of a statistical framework for phylogenetic in-

ference using split network methods. Split networks have been widely used

as a tool for visualization, but have been neglected as a tool for statistical
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inference. Their success as a tool for visualizing incompatible and ambigu-

ous phylogenetic signals suggests that, properly used, they can become an

invaluable statistical inference tool for phylogenetics. Here we describe a

method for constructing approximate confidence intervals for trees using

networks, and a simple test to determine whether incompatible signal in a

network is statistically significant. There is considerable scope for improve-

ment of both methods.

Finally, we present our new program SplitsTree4, which provides a com-

prehensive and interactive frame-work for estimating phylogenetic trees and

networks. The program provides methods for computing split networks from

sequences, such as the median network (Bandelt et al., 1995) and networks

based on spectral analysis (Hendy and Penny, 1993); from distances, such

as split decomposition (Bandelt and Dress, 1992) and neighbor-net (Bryant

and Moulton, 2004); and from trees, such as consensus networks (Holland

et al., 2004) and super networks (Huson et al., 2004). Moreover, new meth-

ods are provided for computing hybridization networks from trees (Huson

et al., 2005) and recombination networks from binary sequences (Huson and

Kloepper, 2005). Additionally, SplitsTree4 includes a large number of dif-

ferent distance computations and tree building methods.

Terminology

A phylogenetic tree is commonly defined as a leaf-labeled tree that represents

the evolutionary history of a set of taxa, possibly with branch lengths, either

unrooted or rooted.
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The concept of a “phylogenetic network” is much less well defined and

there exist many different usages of the term, see Figure 1. We propose to

define a phylogenetic network as any network in which taxa are represented

by nodes and their evolutionary relationships are represented by edges. (For

phylogenetic trees, edges are referred to as branches.) Under this very gen-

eral heading, one can distinguish between a number of different types of

networks. Phylogenetic trees are one type, see Figure 2. A second type are

split networks, which are obtained as a combinatorial generalization of phylo-

genetic trees, and are designed to represent incompatibilities within and be-

tween data sets, see Figure 3(a). A third type, reticulate networks, represent

evolutionary histories in the presence of reticulate events such as hybridiza-

tion, horizontal gene transfer or recombination, see Figure 3(b). A number of

additional types of networks exist (Posada and Crandall, 2001), for example,

to represent gene duplication and loss phylogenies (Hallett and Lagergren,

2000; Durand et al., 2005) or host and parasite co-evolution (Charleston,

1998). Other approaches for constructing phylogenetic networks include

statistical parsimony (Templeton et al., 1992), the netting method (Fitch,

1997), and a method that, in effect, consists of adding “short-cut” edges to

a tree (Legendre and Makarenkov, 2002).

One major source of confusion has been that different authors define the

generic term “phylogenetic network” rather narrowly to mean some partic-

ular type of network currently under study. For example, a recent paper on

recombination (Gusfield and Bansal, 2005) defines a phylogenetic network

to be a “recombination network”, whereas a recent paper on hybridization

(Linder and Rieseberg, 2004), defines a phylogenetic network to be a “hy-
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bridization network”.

[Figure 2 about here.]

[Figure 3 about here.]

Reticulate networks provide an explicit representation of evolutionary

history, generally depicted as a phylogenetic tree with additional edges. The

internal nodes in such a network represent ancestral species and nodes with

more than two parents correspond to reticulate events such as hybridization

or recombination.

Split networks are used to represent incompatible and ambiguous signals

in a data set. In such a network, parallel edges, rather than single branches,

are used to represent the splits computed from the data. To be able to

accommodate incompatible splits, it is often necessary that a split network

contains nodes that do not represent ancestral species. Thus, split networks

provide only an implicit representation of evolutionary history.

The distinction between these explicit and implicit representations of

evolution is important and has not always been made clear in the past

(Morrison, 2005).

Background

A split is a partition of the taxa into two non-empty subsets, such as the

partition obtained when we remove a branch from a phylogenetic tree. For

example, removing the branch indicated by the arrow in Figure 2(a) splits
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the taxa into two groups {B,C,D,E} and {o,A, F,G,H, I, J,K}. The inter-

pretation of split networks is based on one simple principle: a split network

contains exactly the same information as a list of splits with a weight for

each split.

In a split network, every edge is associated with a split of the taxa,

but there may be a number of parallel edges associated with each split. In

Figure 4, all of the edges corresponding to a split are highlighted, as well as

all the taxa on one side of the split. If the edges associated with a particular

split were to be deleted, then the network would become disconnected with

precisely two components, corresponding to the two parts of the split. The

edges separate taxa on one side of the split from the taxa on the other side

of the split. The length of an edge in the network is proportional to the

weight of the associated split. This is analogous to the length of a branch

in a phylogenetic tree.

The example in Figure 4 gives two representations of the same informa-

tion: (a) a split network representing 14 different splits of a set of 8 taxa;

and (b), a listing of the splits and their weights.

[Figure 4 about here.]

Formally, for a given taxon set X and set of splits S, we define a split

network N to be a connected graph in which some of the nodes are labeled

by taxa and all edges are labeled by splits, such that:

(N1) Removing all edges associated with a given split S in S divides N into

two connected components, one part containing all taxa on one side

of S and the other part containing all taxa on the other side.
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(N2) The edges along any shortest path in N are all associated with different

splits.

Every split network represents a unique collection of splits. However,

uniqueness does not hold in the other direction, as a given collection of

splits can have many different split network representations. In Figure 5 we

show two different split networks that both represent the splits ABC|DEF ,

ABF |CDE, AEF |BCD, together with all six trivial splits on the set

{A,B,C,D,E, F} (Wetzel, 1995).

[Figure 5 about here.]

Due to this non-uniqueness, it is often inappropriate to consider internal

nodes as hypothetical ancestors (Bandelt and Dress, 1992). The interpre-

tation of split networks and statistical tests on them, are based on the un-

derlying set of splits. One exception is the use of split networks to visualize

distance matrices. The phenetic distance between two taxa in a split net-

work is defined as the sum of the weights (or lengths) of the edges along a

shortest path between the taxa (Bryant and Moulton, 2004). This distance

can be computed directly from the associated splits and weights, and does

not change for different split network representations.

The split network, then, is a graphical representation of a collection of

splits with weights. The interpretation of the network therefore depends on

exactly how the splits were constructed and assigned weights. As we shall

see, this varies considerably between methods and between applications.
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Interpreting split networks: representing multiple trees

There are many situations in phylogenetics where we have a large collection

of trees that we wish to summarize in some way. The trees might be the

result of a bootstrap analysis, samples from a posterior distribution or come

from a multi-gene analysis, for example. Techniques for summarizing multi-

ple trees using split networks are described in (Bandelt, 1995; Holland et al.,

2004; Huson et al., 2004). The basic idea is to code each individual tree as a

collection of splits, define a summary set of splits from these and represent

the resulting set using a split network. For example, consensus networks are

constructed from all splits appearing in at least some fixed proportion of

the input trees. A consensus network can represent much more information

than a single tree with p-values.

Here we take the consensus network methods one step further and use

split networks to define confidence sets of trees. Suppose that we have

assigned an interval for the weights of each split (represented) in a split

network N . We say that a tree T is contained within the split network N if

1. Every split in the tree is a split in the network.

2. For every split in the tree, the corresponding branch length is contained

within the interval assigned to the appropriate split weight.

3. For every split in the network not in the tree, the interval assigned to

that split contains zero.

For example, the split network in Figure 6(a) contains the tree T1 but not

the tree T2, since 0 is not in the interval assigned to the split AB|CD.
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[Figure 6 about here.]

A geometric interpretation might prove useful here. Suppose that the

splits are indexed from 1 to m. A tree can then be coded as a point in

m-dimensional space: the ith co-ordinate is the length corresponding to the

ith split, or 0 if that split is not present in the tree (Holmes, 2005). The

split network then corresponds to a box in m-dimensional space: the range

of values in the ith dimension is given by the interval for the ith split. A

tree is contained in the network if the corresponding point is contained in

the box.

A network with intervals assigned to edges is an X% confidence network

if, for different random samples, it has an X% probability of containing the

‘true’ tree. In the appendix we propose a method for constructing approxi-

mate confidence networks using non-parametric bootstrapping. Confidence

networks can also be defined for Bayesian analyses, where they would de-

scribe posterior confidence sets. The split summaries produced by MrBayes

(Ronquist and Huelsenbeck, 2003) come close to this.

The use of split networks to describe confidence sets for trees fits well

with the geometric analysis of tree-space in (Billera et al., 2001). They

construct a model of tree-space by pasting together sections of Euclidean

space. Each dimension, in their picture, corresponds to a different split.

Hence their model of tree-space sits naturally in the much larger, and much

simpler, space of split networks.
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Interpreting split networks: networks and systematic error

The rapid growth in available genomic sequence data opens up exciting

new possibilities, but also new challenges, for phylogenetic inference. This

development means that sampling error is becoming less of an issue while

the impact of systematic error is becoming increasingly important. Sampling

error is random error resulting from a small sample size (number of sites).

Systematic error occurs when mistakes in the assumptions of a model or

method cause data to be mis-interpreted, something that is even more likely

to occur when we consider large, multi-gene, heterogeneous data sets. These

cause biases and artefacts in phylogenetic inference, some of which can be

corrected by modifying the employed model of sequence evolution (Delsuc

et al., 2005; Bryant et al., 2005; Swofford et al., 1996; Felsenstein, 2004a).

Systematic error is particularly important when there is a possibility of

reticulate evolutionary events, since, in such cases, no tree-based model can

accurately model the data.

The two most widely used methods for checking the reliability of a tree

are the non-parametric bootstrap (Felsenstein, 1985) and (for Bayesian anal-

ysis) multiple samples from the posterior distribution (Rannala and Yang,

1996; Ronquist and Huelsenbeck, 2003). These techniques are designed to

protect from sampling error; they are not designed to protect from sys-

tematic error. On short sequences, bootstrap resampling has the effect of

‘jiggling’ the data and so can provide some assessment of robustness. How-

ever, when the number of sites is very large, the bootstrap replicates will be

all very similar and so the bootstrap support will be high, no matter how
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poorly the data fits a tree.

Systematic error, unlike sampling error, does not disappear as the se-

quence length increases. Indeed it might even become worse (Delsuc et al.,

2005).

In tree-based phylogenetic analysis the goal is to find the phylogenetic

tree that best explains the observed patterns in the data. When there is

systematic error, shortcomings of the model mean that the observed data

will (in general) not appear to have originated from any tree. The tree-

building method will attempt to fit a tree, even if there is still a huge gap

between the data and the best tree that the method can find. This gap is

the principal cause of reconstruction artefacts (Steel, 2005).

Model-based split network methods (e.g. Bryant and Moulton (2004);

Huber et al. (2002); Winkworth et al. (2005)) deal with systematic error by

adding parameters to the evolutionary model. In conventional phylogenet-

ics, parameters are added to give a more complex model of the substitution

process down a branch. However, there are two kinds of parameters in

phylogenetic inference: parameters describing the evolutionary model (rate

variation, substitution probabilities, etc.) and parameters describing the

topology (the tree and branch lengths). Evolutionary models based on split

networks add extra topology-related parameters. A phylogenetic tree corre-

sponds to a collection of compatible splits (with weights or lengths). A split

network model is obtained by allowing additional splits with weights. These

extra parameters allow split networks to fit the data better than individual

trees.

It may seem odd to use split networks, which are not trees, to represent
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phylogenetic signals that, for the most part, originate from trees. However

this is not an unusual practice in statistics. Consider the statement “in the

year 2000, the expected number of children in a randomly chosen family in

the US was 1.86”. Of course, there was not a single family with exactly 1.86

children, and it does not make sense to talk about a fractional number of

children in a given family. It does make sense, however, to use fractions in

summary statistics like this one. The same applies to split networks. In the

absence of reticulation, it doesn’t make sense to speak of sequences evolving

on a network but it does make sense to infer split networks as summary

statistics.

The example in (Kolaczkowski and Thornton, 2004) demonstrates that

unaccounted rate variation can mislead both maximum likelihood (ML) and

parsimony-based analyses into selecting the wrong tree. We show below

that the rate variation did not mislead a split network method, split de-

composition, which displayed, simultaneously, support for the true tree and

the artefactual tree. The split network better represented the phylogenetic

signal than either tree.

The example in (Esser et al., 2004) shows how split network methods can

extract phylogenetic signals that are missed by tree-based methods. The

study involves multiple genes and an ML tree analysis of each gene gives

statistical (i.e. bootstrap) support for conflicting phylogenies. However it is

apparent that the ML analyses are affected by systematic error. A neighbor-

net analysis returns split networks for each gene that incorporate both the

ML tree and additional splits. Furthermore, many of these additional splits

appear in almost all networks for the other genes. The probability of this
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occurring by chance is extremely small. Hence the additional splits recovered

by the split network method are probably contained in the true underlying

phylogeny.

To summarize, an initial strategy for using split network methods in

phylogenetic inference would be:

1. Construct a split network using the best available model and method.

2. Determine if the network is significantly different from a tree.

3. If the network is significantly non-treelike then there is probably an

error in the model. If possible, improve the model and go back to

step 1. If the conflicting or ambiguous signal in the split network can

not be explained then this failure to explain the data properly should

be reported and taken into account in any conclusions drawn from the

phylogenetic analysis.

4. If the network is not significantly non-treelike (and there is evidence

that the sampling error of the network method is not too large) then

continue with a tree-based phylogenetic analysis.

Reticulate networks

Split networks provide an implicit picture of evolutionary relationships. Sets

of parallel edges are employed to represent splits. As mentioned above, in-

ternal nodes in a split network do not necessarily correspond to hypothetical

ancestors.
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In contrast, “reticulate networks” provide an explicit picture of evolu-

tion. In such a network, edges represent lineages of descent or reticulate

events such as hybridization, horizontal gene transfer or recombination, and

all nodes correspond to hypothetical ancestors, whether the product of spe-

ciation and mutation, or reticulate events.

Such explicit networks are usually drawn “rooted”, so that the edges

have a direction with an evolutionary meaning. In contrast, most split net-

works published to date are displayed as unrooted networks. However, it

is possible to root split networks, e.g. by specifying an outgroup, as illus-

trated in Figure 2(a), and an algorithm for drawing rooted split networks is

available in SplitsTree4.

A hybridization network is a reticulate network N that can explain a

given set of trees in terms of hybridization, see (Maddison, 1997; Baroni

et al., 2004; Nakhleh et al., 2004; Huson et al., 2005). More precisely, given a

set of trees T = {T1, . . . , Tm}, usually obtained from a collection of different

genes, one would like to determine a putative reticulate network N from

which the trees arise. If such a network can be found, then we say that the

network N explains the set of trees T in terms of hybridization.

In a recent paper (Huson et al., 2005), we describe a method that can

solve this problem for certain patterns of hybridization and this is imple-

mented in the SplitsTree4 program. It takes as input a set of trees and

first computes the splits network that represents all splits present in the

input trees. Each “netted component” (“2-connected component”, in terms

of graph-theory) of the network is then individually analyzed in turn and

is replaced by a reticulation scenario, if one can be found that explains the
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given splits in the component.

As an example, suppose that the two trees depicted Figure 2 are based on

two different genes. In Figure 3(a) we show the split network that represents

all splits present in either of the two trees. The netted regions in the network

indicate in which parts of the phylogeny there is disagreement between the

two trees.

Figure 3(b) depicts a reticulate network that can explain the differences

in the two trees using three reticulation events. In this example, the clade

{B,C} arises from a reticulation event between the lineages leading to taxa

A and D, whereas the taxon H, or I, arises from a reticulation event between

the lineages leading to G and {J,K}, or to {F,G} and J , respectively.

Recombination as a reticulate event is usually considered in population

studies (Hudson, 1983; Hein, 1990) and the arising graphs are called ances-

tor recombination graphs (ARGs), or recombination networks. A number of

algorithms for inferring such networks have recently be proposed (Gusfield

and Bansal, 2005; Lyngsoe et al., 2005; Huson and Kloepper, 2005). Such

methods take as input a sequence of two-state characters and attempt to

explain the given characters in terms of evolution by speciation, mutation

and recombination, under the restriction that a mutation of any charac-

ter may happen at most once throughout the whole phylogeny. In (Huson

and Kloepper, 2005), we describe a new method that solves this problem

for certain patterns of recombination and this approach is implemented in

SplitsTree4.
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Methods

SplitsTree4 is a completely new program that we have developed over the

past three years. It was inspired by SplitsTree3 (Huson, 1998), which was

primarily an implementation of the split decomposition method (Bandelt

and Dress, 1992). SplitsTree4 integrates a wide range of phylogenetic net-

work and phylogenetic tree methods, inference tools, data management util-

ities, and validation methods. The key design goals were ease of use, porta-

bility, and flexibility. A user can click their way through a split network

analysis or control the entire program from a command line. The code is

written in Java and thus runs under Linux, MacOS and Windows. The

support of plugins makes it easy to add new functionality. The program is

freely available from: www.splitstree.org.

There are now many published methods for inferring split networks and

we have implemented most of them in SplitsTree4. These include

• median networks (Bandelt et al., 1995), parsimony splits (Bandelt and

Dress, 1994) and spectral analysis (Steel et al., 1992), which construct

split networks (or equivalently, weighted splits) directly from character

data;

• split decomposition (Bandelt and Dress, 1992) and neighbor-net

(Bryant and Moulton, 2004) which construct split networks from in-

ferred distance matrices;

• consensus networks (Bandelt, 1995; Holland et al., 2004) and super-

networks (Huson et al., 2004) which construct split networks from sets
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of trees.

SplitsTree4 also contains methods for constructing other kinds of phyloge-

netic networks, including recombination networks (Huson et al., 2005) and

hybridization networks (Huson and Kloepper, 2005).

The software implements maximum likelihood (ML) estimation of dis-

tances from amino acid and nucleotide sequences, under all standard evo-

lutionary models. The implemented phylogenetic tree methods include

neighbor-joining (Saitou and Nei, 1987), Bio-NJ (Gascuel, 1997), UPGMA

(Sokal and Michener, 1958), the Buneman tree (Buneman, 1971), the refined

Buneman tree (Brodal et al., 2003) and standard consensus tree methods.

SplitsTree4 also provides a graphical front-end for ML analysis using PhyML

(Guindon and Gascuel, 2003) and parsimony analysis using Phylip (Felsen-

stein, 2004b). All character-based analyses can be bootstrapped.

The graphical interface makes it easy for users to interactively explore

their data using different phylogenetic methods, starting with a standard

file format (e.g. NEXUS, FastA, Phylip,. . . ). Users can select from different

analyses, filter data, and manipulate networks, all using standard menus.

The data, and networks, can be exported to a variety of different file for-

mats including the standard image formats PostScript, JPEG, SVG, PNG

and GIF. Multiple analyses can be run at the same time, and the program

is multi-threaded so time-consuming calculations can be done in the back-

ground.

More details on the architecture of the program can be found in the

appendix.
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Examples

Heterogeneous evolution and split networks

The variation of evolutionary rates across sites and between lineages is a well-

recognized source of phylogenetic error. A particularly intriguing synthetic

example is described in (Kolaczkowski and Thornton, 2004), intriguing be-

cause in their experiments, parsimony outperforms likelihood in situations

of model violation (see also Spencer et al. (2005); Steel (2005)). The ex-

periment provides a clear and simple illustration of how violation of the

evolutionary model can mislead phylogenetic inference. In effect, sequences

that evolved on one tree appear to have evolved on a different tree.

Sequences of varying lengths were evolved on a single tree, half of the sites

with one set of branch lengths and the remaining sites with a second set of

branch lengths, see Figure 7(a). The change in branch lengths simulates an

extreme example of rate variation, one that violates the basic assumptions

of standard maximum likelihood analysis. Consequently, ML repeatedly

reconstructs the wrong tree, even with long (or indeed, infinite) sequences.

Parsimony was also misled, but, in this setup, less so than ML.

We repeated the experiment of (Kolaczkowski and Thornton, 2004) to

examine how split decomposition is affected by the model variation. For

each length (r) of the internal branch we constructed sequences of length

1000, 10 000, and 100 000. These were analyzed using maximum parsimony,

maximum likelihood (using PhyML, Guindon and Gascuel (2003), with the

Jukes-Cantor model, no site rate distribution and no invariant sites) and

split decomposition. A tree, or network, was judged ‘correct’ if it contained
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the true split separating A and B from C and D, and at most one alternative.

We performed 200 replicates for each parameter setting, and report the

proportion correct in Figure 7(b).

Split decomposition returned the ‘correct’ split for even small values of r.

Of course, split decomposition gets an unfair advantage: effectively, it can

choose two trees instead of one. This is exactly the advantage of networks.

In this case, split decomposition cannot decide between two trees, the true

tree and the ML tree. The networks returned for different values of r (and

infinite sequences) are given in Figure 7(c). Looking, for example, at the

split network produced when r = 0.3, we see that there is an even balance

between support for the tree AB|CD and the tree AD|BC. The indecision in

the ML analysis is due to sampling error pushing the signal towards one tree

or the other. As r increases, the phylogenetic tree methods settle uniquely

on a single tree which, in this case, is the correct tree. However the network

still has a large box: the closest tree may be the correct tree but there is

a substantial amount of phylogenetic signal in the data that is not being

explained adequately by a single tree.

[Figure 7 about here.]

Animal phylogeny

Our second case study illustrates the application of SplitsTree4 to genome-

scale phylogenetics. The data set was prepared by (Philippe et al., 2005) and

consists of 71 (slowly evolving) genes (20,705 amino acid positions) from 35

animals, 10 fungi and 2 choanoflagellates. The phylogeny for the bilaterian
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animals has been the subject of much discussion recently, one key question

being whether the ecdysozoa (e.g. arthropods, nemotodes, tardigrades) or

the coelomates (e.g. mollusca, deuterosomes, arthropoda) are monophyletic

(Hedges, 2002; Philippe et al., 2005; Wolf et al., 2004).

We conducted a neighbor-net analysis using ML distances inferred from a

concatenated data set under the Jones, Taylor, and Thornton (JTT) + F +

Γ model (Jones et al., 1992), see Figure 8. One hundred bootstrap replicates

were performed. The nemotodes, arthropods, deuterotomes, choanoflagel-

lates and platyhelminthes are all well supported groups with 100% bootstrap

support. However the relationships between these groups are less clear: the

network seems mid-way between a tree grouping nemotodes, tardigrades

and arthropods (the ecdysozoa hypothesis) and a tree grouping arthropods,

tardigrades and deuterostomes (the coelomate hypothesis). Neither hypoth-

esis is supported by a clear split in the network: the clearest split in favor

of the ecdysozoa hypothesis misplaces the annelids, while the clearest split

in favor of the coelomates misplaces the cnidaria.

[Figure 8 about here.]

Neighbor-net, like any phylogenetic method, is affected by sampling er-

ror, and this could potentially explain the observed conflicting signals. There

are many potential sources for systematic error in a data set this large and

diverse (Philippe et al., 2005): rate variation, heterotachy, variation in sub-

stitution rates, or interdependence of sites, to name a few. One suspected

consequence of this modeling error is an increased problem with long branch

attraction, where biases in the model or method tend towards trees grouping
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long branches together (Felsenstein, 2004a).

Using a subset of the taxa, it was recently demonstrated (Philippe et al.,

2005) that support for a coelomates clade or an ecdysozoa clade with a tree-

based method depends greatly on the choice of outgroup, see Figure 9. The

ecdysozoa clade appears only once a closely related outgroup (a cniderian)

was used, indicating that the coelomate tree is due to long branch attraction.

This is an example of the effect of taxon instability: the information present

in the cniderian sequence changes the resolution of taxa in other parts of the

tree. If we look at a split network analysis of the sequences we see that there

is at least some support for the ecdysozoa clade even when the cnidarian

taxon is absent.

When the cniderian taxon is absent the tree-based method (in this case,

BioNJ Gascuel (1997)) consistently ignores that information supporting the

ecdysozoa hypothesis, even though the split network (computed by neighbor-

net) indicates that there is some support for an ecdysozoa clade. When the

cniderian is included, the tree based method switches to consistently sup-

porting the ecdysozoa clade. The support for the ecdysozoa hypothesis does

not rest on a single taxon: the additional taxon merely tips the balance.

The split network, in contrast, does not change abruptly with the inclu-

sion of the additional taxon (not shown). Both trees are contained in a

single network, and the support for one or the other only alters the branch

lengths/split weights. (However, in other situations, split networks can also

change abruptly after the addition of taxa.)

[Figure 9 about here.]
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The evolutionary history of dusky dolphins

This example is taken from a recent paper (Cassens et al., 2003) that investi-

gates the phylogeography of dusky dolphins (Lagenorhhynchus oscurus) and

compares a number of different network methods. The data used are the

sixty variable positions in the DNA sequences of the full mitochondrial cy-

tochrome b gene for 36 different haplotypes seen in 124 individuals, sampled

off Peru, Argentina and Southwest Africa. The paper discusses the applica-

tion of four different network methods, split decomposition, the “minimum

spanning network” “statistical parsimony”, and the “median joining net-

work”.

We have reanalyzed this data using methods available in SplitsTree4.

Calculation of observed-P distances and application of the neighbor-joining

method produced the tree depicted in Figure 10(a). The edges are labeled

by the %-bootstrap support attained in 1000 bootstrap replicates.

Based on this tree, the 95%-confidence network for neighbor-joining dis-

played in Figure 10(b) shows that there is considerable sampling variance

in the tree estimate, particularly when we consider the large confidence in-

tervals on the edge lengths. One split S ′ places the Atlantic haplotype A9

together with two Pacific haplotypes P4.1 and P4.2, which is incompatible

with the central split S between Pacific and Atlantic haplotypes. The confi-

dence intervals for both splits include 0, so there is too much sampling error

with neighbor-joining to discriminate between the two possibilities.

Application of the maximum parsimony algorithm using the Phylip

dnapars program produced three most parsimonious trees, whose consen-
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sus network is depicted in Figure 10(c). Here we see that the three trees do

not differ significantly.

In Figure 10(d) we display the median network. Each split is labeled by

the columns of the alignment that support it. We see that the central split

S separating Pacific and Atlantic haplotypes is supported by precisely three

positions, 3, 18, 25, whereas the incompatible split S ′ is only supported by

position 11.

Application of split decomposition to the uncorrected-P distances pro-

duces the split network shown in Figure 10(e). On this data set, the split

decomposition captures most of the incompatible signals that are present

in the median network, including the two incompatible splits mentioned

above. Finally, we display the split network produced by neighbor-net in

Figure 10(f). By definition, this method can only produce a planar network.

In this example the resulting network is missing some of the splits that are

present in the median network and also in the split decomposition network.

(In theory, and for small or highly similar data sets, the split decomposition

method produces more resolved networks than neighbor-net, as the networks

produced by split decomposition are not restricted to be planar. However,

in practice, and for large or divergent data sets, split decomposition suffers

from low resolution and the networks produced by neighbor-net are usually

more resolved.)

[Figure 10 about here.]
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Discussion

Phylogenetic networks have an important role to play in the reconstruction

of evolutionary history. Implicit models such as split networks are very use-

ful for exploring and visualizing the different signals in a data set. Explicit

models such as hybridization and recombination networks can be used to

provide an explicit description of reticulate evolution. Both types of net-

works have an important role to play. Many current methods for computing

split networks from characters, distances or trees are very robust and can

provide valuable insights. In contast, the existing methods for computing hy-

bridization and recombination networks are unproven, and, as all are based

on some kind of combinatorial analysis of a given configuration of splits,

they are very susceptible to false positive signals.

In the past, split network methods have been neglected as a tool for

statistical inference in phylogenetics. This was due, in part, to the lack of

an appropriate statistical framework, the absence of an integrated software

package, and conceptual difficulties of thinking in terms of split networks as

well as trees.

We have described the beginnings of a comprehensive statistical frame-

work for phylogenetic analysis based on split network methods. The key

messages are that split networks are representations of splits, and using

more splits permits a more accurate representation of the data. The con-

fidence networks and tests we presented illustrate a new general approach,

although much remains to be done to improve the efficiency and power of

these methods.
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Finally, we have introduced the new SplitsTree4 program, which was in-

spired by the popular SplitsTree3 program. SplitsTree4 is an integrated and

user-friendly software package allowing users to conduct phylogenetic anal-

ysis using trees, split networks and reticulate networks. With SplitsTree4,

we hope to provide a robust framework for inferring and investigating phy-

logenetic networks.
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Appendix

Bootstrap approximate confidence networks

A confidence network is essentially a representation of multiple confidence

intervals: one confidence interval for the weight of each split. The problem

of constructing confidence networks is therefore the same as the problem of

constructing simultaneous confidence intervals. Methods for this problem

date back to (Scheffé, 1953; Tukey, 1953).

Suppose that for each split we construct the interval for the weight of

the split. We say that the intervals are balanced if the probability that

each interval contains the true weight is the same for each interval. We say

that the collection of intervals (or equivalently, the confidence network) level

1 − α, if the probability that all of the intervals contain the true weights

simultaneously is 1−α. The goal when constructing simultaneous confidence

intervals is to construct a balanced collection of intervals with the correct

level.

In SplitsTree4 we have implemented the non-parametric bootrapping ‘B

method’ of (Beran, 1988, 1990) to construct the simultaneous confidence

intervals represented by a confidence network; see (Beran, 1988) for a com-

plete description of the method (Note that we use the difference between

split weights as the confidence set root when implementing the B method).

Beran proved that, under fairly general conditions, the confidence sets will be

asymptotically correct to a first order approximation. Hence, given sufficient

bootstrap replications and long enough sequences, the confidence network

will have close to the correct level and will be approximately balanced.
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There are two major caveats. Firstly, network methods like neighbor-

net are not continuous, in the sense that a small change in the data can

sometimes cause a substantial change in the inferred network. This means

that the asymptotic convergence conditions outlined in (Beran, 1988) will

hold locally, but not over the entire parameter space.

The second problem is that methods like split decomposition and

neighbor-net only construct split networks involving a small number of splits,

compared to the number of splits in total. When bootstrapping, many splits

appear in only one or two bootstrap replicate networks and so most splits

have weight zero for almost all replicates. The net result is that, in simu-

lation, the confidence networks constructed using Beran’s B method have

incorrect level, even with sequences of length 5000 and 1000 bootstrap repli-

cates. The problem is caused by splits that appear in the true tree but

not in the estimate tree, perhaps because of their signals being lost in the

sampling error.

There are several avenues for future investigation. Beran (1990) de-

scribes a double bootstrap method that is more accurate than the original

B method. (Efron et al., 1996) applied a double bootstrapping to one di-

mensional hypothesis tests in phylogenetics. Unfortunately, both of these

methods require that the number of bootstrap replicates be squared.

Network tree-likeness test

Suppose that we have inferred a split network N̂ from some data and that

this network is not a tree. We want to test whether it is likely that the data

originated from a tree. This is easy to do if we have an efficient and correct
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method for constructing correct confidence networks.

(a) Construct a confidence network for N̂ with level 1 − α.

(b) If the confidence network does not “contain” a tree (in the technical

sense defined above) then reject the null hypothesis that the data

originated on a tree.

Part (b) can be executed quickly by constructing the set of splits with

confidence intervals excluding zero and rejecting the null hypothesis if and

only if this set is incompatible. The performance of the test will, naturally,

depend on the confidence network method used. Simulations using the above

confidence network indicate that the test is correct but has unacceptably low

power. Much work remains.

The architecture of SplitsTree4

The graphical interface makes it easy for a user to interactively explore

their data using different phylogenetic methods. The user can select from

different analyses, filter data, and manipulate networks, all using standard

menus. The data, and networks, can be imported and exported using a

variety of different file formats. Multiple analyses can be run simultaneously

and the program is multi-threaded so time-consuming calculations are done

in the background. SplitsTree4 uses the NEXUS format, as does PAUP*,

Mr Bayes, Mesquite, and MacClade.

For the more advanced features, it is important to have an understand-

ing of how SplitsTree4 organizes and processes data. The program arranges
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its data into a list of different blocks, namely the taxa, unaligned, charac-

ters, distances, quartets, trees, splits and network blocks. The taxa block is

mandatory, the other blocks are optional. The list of blocks, in this order,

is called the processing pipeline. Additional blocks are used to direct the

analyses and assumptions made by the program.

Usually, the initial input to the program will consist of a taxa block and

one additional block containing the input data, which is called the source

block. Any phylogenetic method is viewed as a transformation of one type of

data block to another. Most analyses involve a sequence of transformations

applied in the same order as the processing pipeline. For example, suppose

that the source is a characters block containing an alignment of DNA se-

quences and the goal is to produce the neighbor-net network for this data.

The data in the characters block is first transformed into a distances block

using a distance calculation such as the uncorrected-P calculation. Next,

the distances block is transformed into a splits block using the neighbor-net

algorithm. Finally, the data in the splits block is transformed into a network

block using a network construction algorithm such as “equal angle” (Dress

and Huson, 2004).

SplitsTree4 is written in Java and installers are available for Windows,

Mac OS X, and Unix/Linux. The program can be used interactively in a

GUI mode, or can be run in a non-interactive mode using the command line

to facilitate batch processing.
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A B C D E F G H weights

1 • ◦ ◦ ◦ ◦ ◦ ◦ ◦ 7.92

2 ◦ • ◦ ◦ ◦ ◦ ◦ ◦ 3.31

3 ◦ ◦ • ◦ ◦ ◦ ◦ ◦ 1.74

4 ◦ ◦ ◦ • ◦ ◦ ◦ ◦ 3.72

5 ◦ ◦ ◦ ◦ • ◦ ◦ ◦ 8.94

6 ◦ ◦ ◦ ◦ ◦ • ◦ ◦ 3.88

7 ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 5.63

8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 6.21
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14 ◦ ◦ ◦ ◦ ◦ • • • 1.95
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Figure 9(a):
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Figure 10(c):
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Captions
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Figure 1: The term phylogenetic network encompasses a number of different
concepts, including phylogenetic trees, split networks, reticulate networks,
the latter covering both hybridization and recombination networks, and other
types of networks such as augmented trees. Recombination networks are
closely related to ancestor recombination graphs used in population stud-
ies. Split networks can be obtained from character sequences e.g. as a me-
dian network, from distances using the split-decomposition or neighbor-net
method or from trees as a consensus network or super network. Augmented
trees are obtained from phylogenetic trees by inserting additional edges to
represent e.g. horizontal gene transfer. Other types of phylogenetic networks
include host-parasite phylogenies or haplotype networks. Diagram adapted
from (Huson and Kloepper, 2005)
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Figure 2: Two different trees on the taxon set X = {o,A,B, . . . ,K}.
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Figure 3: Two different types of phylogenetic networks. (a) A split network
representing all splits present in the two trees depicted in the previous fig-
ure. Here, each band of parallel edges corresponds to a branch contained in
one of the input trees. The nodes do not necessarily correspond to hypo-
thetical ancestors. (b) A reticulate network that explains the two trees by
postulating three reticulations that give rise to the clades {B,C}, {H} and
{I}. This network explicitly describes a putative evolutionary history: the
internal nodes correspond to ancestral taxa and the edges represent patterns
of descent.
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Figure 4: Two representations of the same information. (a) A split network
representing the diversity of HIV strains in a single patient at a single time-
point, data from (Shankarappa et al., 1999). For clarity, edges are labeled by
the number of the associated splits. Additionally, all edges representing split
number 10, and all taxa on one side of this split, are highlighted in bold.
(b) The same information presented as a table of splits and weights (for
example, representing the average number of substitutions per site) given
for each split. Each split divides the taxa into two groups, one represented
by open circles, the other by closed circles. For example, split 10 divides the
taxa into {A,B,C} and {D,E, F,G,H}.
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Figure 5: Two different representations of the same set of splits.
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Figure 6: A simple confidence network N and two trees T1, T2. The network
contains the tree T1 with the given branch lengths, but it does not contain
tree T2 since the split AB|CD has weight 0 in tree T2 (that is, it is not
present) but the confidence interval for the weight of AB|CD in the network
does not include 0.
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Figure 7: The effect of rate heterogeneity on ML, MP, and
split decomposition. (a) Following the model proposed in
(Kolaczkowski and Thornton, 2004), sequences are evolved on a four
taxa tree, half with one set of branch lengths and half with the other. Here,
p = 0.75, q = 0.05 and r varies between 0 and 0.4 expected mutations per
site. Sequences were simulated, and analyzed, using a Jukes-Cantor model.
(b) For each internal branch length r, the fraction of 200 replicates that
each method returned the correct tree or a network containing the correct
tree. (c) The split networks corresponding to infinite sequences for internal
branch values r = 0, 0.1, 0.2, 0.3, 0.4.
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Figure 8: A neighbor-net constructed from a concatenation of 71 genes from
49 animals, fungi and choanoflagellates. The major groupings are indicated.
The network does not conclusively support either the coelomate hypothe-
sis (molluscs, deuterosomes, arthropods grouping together) or the ecdysozoa
hypothesis (arthropods, nemotodes, tardigrades grouping together) but sug-
gests that there is evidence for both. A network tree-likeness test indicates
that the conflict is not merely the product of sampling error. Instead the
network is representing the effect of problems with the model or biases in
the estimation methods.
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Figure 9: (a) The Bio-NJ tree (Gascuel, 1997), with bootstrap values, for
a smaller set of 7 animals (following (Philippe et al., 2005)) using a con-
catenated alignment of 146 genes, ML distances under a JTT+F+Γ model.
The tree-based method gives reasonable, but not conclusive, support for
the coelomate hypothesis, though the small bootstrap value, even with this
large number of sites, already suggests that the clade is unreliable. (b)
The neighbor-net network using the same distance estimates, with boot-
strap values. Even without the cnidarian taxa, there is substantial (but not
conclusive) support in the data for the ecdysozoa hypothesis.

54



www.manaraa.com

Figure 10: For an alignment of 60 variables sites of DNA for 35 haplotypes
of dusky dolphins, we show: (a) The neighbor-joining tree with bootstrap
values. (b) The 95% confidence network obtained from the preceeding tree.
To avoid clutter, we only show confidence intervals for the main internal
splits. (c) The consensus network of the three most parsimonious trees. (d)
The median network, with edges labeled by supporting sites. (e) The split
decomposition network. (f) The neighbor-net network.
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